Statistics I (Eco 255)

Formula Sheet

1. Definitions:

\[n = \text{The number of observations in the sample.} \]
\[x_i, y_i = \text{Series of observations on } x \text{ and } y \text{ indexed by } i \text{ (i goes from 1 to } n). \]
\[P = \text{Percentile. A number satisfying the requirement that at least } P \text{ percent of the observations take on values less than or equal to that value and at least } 100 - P \text{ percent take on values greater than or equal to that value.} \]
\[s_t = \text{Value of a share at time } t. \]

2. Descriptive Statistics and Graphs

Percentile Index \[i = \frac{P}{100} n \]
Approx. Class Width \[w \approx \frac{\max x_i - \min x_i}{n} \]
Sample Mean \[\bar{x} = \frac{\sum x_i}{n} \]
Sample Variance \[s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1} \]
Sample Covariance \[s_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n - 1} \]
Standard Deviation \[s = \sqrt{s^2} \]
Sample Correlation \[r_{xy} = \frac{s_{xy}}{sx sy} \]

3. Chebychev’s Inequality and the Empirical Rule

Let \(x \) denote the value of a random variable with mean \(\mu_x \) and standard deviation \(\sigma_x \). For any value of \(k \) \((k > 0)\),

\[P (|x - \mu| \geq k\sigma) < \frac{1}{k^2} \quad P (|x - \mu| \leq k\sigma) \geq 1 - \frac{1}{k^2} \]

This is referred to as Chebychev’s Inequality (sometimes ‘rule’).

3.1 Probability Rules

<table>
<thead>
<tr>
<th>Chebychev</th>
<th>Empirical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within 1(\sigma) of mean</td>
<td>(\geq 00%)</td>
</tr>
<tr>
<td>Within 2(\sigma) of mean</td>
<td>(\geq 75%)</td>
</tr>
<tr>
<td>Within 3(\sigma) of mean</td>
<td>(\geq 89%)</td>
</tr>
</tbody>
</table>