Statistics I (Eco 255)

Formula Sheet for Second Exam

1. Definitions:

 \(S = \) The universal set. All possible outcomes of the experiment are elements of the universal set.

 \(\Phi = \) The empty set. A set that has no points.

 \(e_i = \) Simple events which denote all the possible outcomes of the experiment. \(\sum e_i = S \) and \(e_i \cap e_j = \Phi \).

 \(\cup = \) The union of two events, \(e_i \cup e_j \) indicates the set which has occurred if \(e_i \) or \(e_j \) (or possibly both) have occurred.

 \(A = \) A compound event defined as the union of simple events. We say the event \(A \) has occurred if any other simple events which comprise \(A \) has occurred.

 \(\Pr\{e_i\} = \) A probability distribution defined over the set of basic outcomes. \(0 \leq \Pr\{e_i\} \leq 1 \).

2. Probability

2.1 Basic Formulae

 \(P(A) = \sum_{e_i \in A} \Pr\{e_i\} \) \quad \(\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \)

2.2 Compliments

 \(\Pr(A^c) = 1 - \Pr(A) \) \quad \(\Pr(A_1 \cup A_2 \cup \ldots \cup A_n) = 1 - \Pr(A_1^c \cap A_2^c \cap \ldots \cap A_n^c) \)

2.3 Conditional Probability and Independence

 \(\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)} \) \quad \(\Pr(A \cap B) = \Pr(A|B) \Pr(B) = \Pr(B|A) \Pr(A) \)

Sets \(A \) and \(B \) are independent if and only if

 \(\Pr(A \cap B) = \Pr(A) \Pr(B) \)

2.4 Permutations and Combinations

 \(n! = n \cdot (n - 1) \cdot (n - 2) \cdots 2 \cdot 1 \) \quad \(P_r^n = \frac{n!}{(n-r)!} \) \quad \(C_r^n = \frac{n!}{r!(n-r)!} = \binom{n}{r} \)

2.5 Bayes Formula

 \(\Pr(A_1 | B) = \frac{\Pr(B | A_1) \Pr(A_1)}{\Pr(B | A_1) \Pr(A_1) + \Pr(B | A_2) \Pr(A_2) + \ldots + \Pr(B | A_n) \Pr(A_n)} \)
2.6 Expectations

\[E(x) = \sum_{x} x \Pr(x) = \mu \quad E(x - \mu)^2 = \sum_{x} (x - \mu)^2 \Pr(x) = \sigma^2 \]

3. Discrete Distributions

3.1 Binomial Distribution

Let \(x \) denote the sum of the results from \(n \) Bernoulli trials. The probability of \(x \) successes in \(n \) trials, where \(p \) is the probability of a ‘success’ and \(q = 1 - p \), has the following form:

\[x = \sum_{j=1}^{n} x_j \quad \Pr(x) = p^x q^{n-x} \quad E(x) = np \quad \sigma^2 = npq \]

3.2 Poisson Distribution

Let \(x \) denote the number of ‘successes’ or ‘arrivals’ in some interval of time or space. The probability of that \(x = k \) has the following form.

\[\Pr(x) = \frac{\mu^k e^{-\mu}}{k!} \quad E(x) = \mu \quad \sigma^2 = \mu \]

3.3 Summary

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Parameters</th>
<th>Trials</th>
<th>Range</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial</td>
<td>(n, p)</td>
<td>(n)</td>
<td>(x = 0, 1, \ldots, n)</td>
<td>(np)</td>
<td>(npq)</td>
</tr>
<tr>
<td>Poisson</td>
<td>(\mu)</td>
<td>?</td>
<td>(x = 0, 1, \ldots, n)</td>
<td>(\mu)</td>
<td>(\mu)</td>
</tr>
</tbody>
</table>

4. Continuous Distributions:

4.1 The Uniform Distribution:

A random variable is said to be uniformly distributed between \(a \) and \(b \) if

\[f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{elsewhere} \end{cases} \]

The mean of this distribution is \((b + a)/2\), and the variance is \((b - a)^2/12\).

4.2 The Normal Distribution:

The normal distribution is our bell-shaped curve. Its exact form depends upon two parameters, \(\mu \) and \(\sigma \). Two useful formula relate the standardized and nonstandardized forms:

\[z = \frac{x - \mu}{\sigma} \quad x = z\sigma + \mu \]