Outline of Presentation

1. Riemann Zeta Function
2. Ihara Zeta Function
3. Extend Zeta Function to Infinite Graphs
4. Graph Covers
5. Method of finding Zeta Function
6. $\text{PSL}(2, Z)$
7. Current Status
Outline of Presentation

1. Riemann Zeta Function
Outline of Presentation

1. Riemann Zeta Function
2. Ihara Zeta Function
Outline of Presentation

1. Riemann Zeta Function
2. Ihara Zeta Function
3. Extend Zeta Function to Infinite Graphs
Outline of Presentation

1. Riemann Zeta Function
2. Ihara Zeta Function
3. Extend Zeta Function to Infinite Graphs
4. Graph Covers
Outline of Presentation

1. Riemann Zeta Function
2. Ihara Zeta Function
3. Extend Zeta Function to Infinite Graphs
4. Graph Covers
5. Method of finding Zeta Function
Outline of Presentation

1. Riemann Zeta Function
2. Ihara Zeta Function
3. Extend Zeta Function to Infinite Graphs
4. Graph Covers
5. Method of finding Zeta Function
6. $PSL_2(\mathbb{Z})$
Outline of Presentation

1. Riemann Zeta Function
2. Ihara Zeta Function
3. Extend Zeta Function to Infinite Graphs
4. Graph Covers
5. Method of finding Zeta Function
6. $PSL_2(\mathbb{Z})$
7. Current Status
Riemann Zeta Function

- **Riemann Zeta Function (Basic Definition)**

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad s \in \mathbb{C}. \]
Riemann Zeta Function

• Riemann Zeta Function (Basic Definition)

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad s \in \mathbb{C}. \]

• Riemann Zeta Function (Euler Product)

\[\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}}. \]

• Riemann Hypothesis

If \(\zeta(s) = 0 \) where \(0 < \text{Re}(s) < 1 \), then \(\text{Re}(s) = 1/2 \). This is to say that all non-trivial zeros of \(\zeta \) are on the critical line.
The Riemann Zeta Function is a fundamental concept in mathematics, particularly in number theory. It is defined as follows:

- **Riemann Zeta Function (Basic Definition)**

 \[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad s \in \mathbb{C}. \]

- **Riemann Zeta Function (Euler Product)**

 \[\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}}. \]

- **Riemann Hypothesis**

 If \(\zeta(s) = 0 \) where \(0 < \Re(s) < 1 \), then \(\Re(s) = 1/2 \). This is to say that all non-trivial zeros of \(\zeta \) are on the critical line.
Ihara Zeta Function

The Ihara-Zeta Function for a finite, connected graph G with no degree 1 vertices is defined as

$$Z_G(u) = \prod_{p \in \mathcal{P}} \frac{1}{1 - u^{\ell(p)}},$$

for $|u|$ small, and where the product is taken over all prime cycles p of G and $\ell(p)$ is the length of cycle p. This clearly resembles the Riemann Zeta Function, $\zeta(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 - p^{-s}}$.
The Ihara-Zeta Function for a finite, connected graph G with no degree 1 vertices is defined as

$$Z_G(u) = \prod_{p \in \mathcal{P}} \frac{1}{1 - u^{\ell(p)}},$$

for $|u|$ small, and where the product is taken over all prime cycles p of G and $\ell(p)$ is the length of cycle p.

This clearly resembles the Riemann Zeta Function,

$$\zeta(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 - p^{-s}}.$$
Bass’ Formula for the Ihara Zeta Function

Bass continued developing the definition of the Ihara Zeta Function by redefining it in terms of the regular adjacency matrix for a finite graph

\[Z_G(u)^{-1} = (1 - u^2)^{(\epsilon - \nu)} \det(I_n - uA + u^2 Q), \]

where \(A \) is the adjacency matrix of \(G \), \(\epsilon \) is the number of edges, and \(\nu \) is the number of vertices. \(Q \) is a diagonal matrix such that the \(j \)th diagonal entry is equal to the degree of the \(j \)th vertex minus one.
Extension to Infinite Graphs

The Ihara Zeta Function $\zeta_X(t)$ for a finite graph X satisfies the relation,

$$\ln \zeta_X(t) = \sum_{r=1}^{\infty} \frac{c_r}{r} t^r,$$

where c_r is the number of closed, oriented loops of length r in the graph X.
Extension to Infinite Graphs

Definition (Grigorchuk and Zuk)
Let $X = \lim_{n \to \infty} X_n$ where X_n is a sequence of k-regular graphs such that the limit of $\tilde{c}_r = c_r(X_n)/|X_n|$ exists when $n \to \infty$. The zeta function $\zeta_X(t)$ of the graph X, with respect to the sequence $\{X_n\}$, is defined by

$$\ln \zeta_X(t) = \lim_{n \to \infty} \frac{1}{|X_n|} \ln \zeta_{X_n}(t) = \sum_{r=1}^{\infty} \tilde{c}_r t^r / r.$$

This series has a nontrivial interval of convergence of at least $1/k$ around 0.
Graph Covers

In order to determine the Ihara Zeta Function of an infinite graph, we will define covering graphs to form sequences of graphs.
Graph Covers

In order to determine the Ihara Zeta Function of an infinite graph, we will define covering graphs to form sequences of graphs.

Definition
A covering map from a group G to another group H satisfies the following mapping where V denotes the vertex set,

$$p : V(G) \rightarrow V(H),$$

such that

1. if $u_i \sim u_j$, then $p(u_i) \sim p(u_j)$, and
2. $p|N(u) : N(u) \rightarrow N(p(u))$ forms a bijection where $N(u) = \{ u_i | u \sim u_i \}$.
Graph Covers

In order to determine the Ihara Zeta Function of an infinite graph, we will define covering graphs to form sequences of graphs.

Definition
A covering map from a group G to another group H satisfies the following mapping where V denotes the vertex set,

$$p : V(G) \to V(H),$$

such that

1. if $u_i \sim u_j$, then $p(u_i) \sim p(u_j)$, and
Graph Covers

In order to determine the Ihara Zeta Function of an infinite graph, we will define covering graphs to form sequences of graphs.

Definition
A covering map from a group G to another group H satisfies the following mapping where V denotes the vertex set,

$$ p : V(G) \to V(H), $$

such that

1. if $u_i \sim u_j$, then $p(u_i) \sim p(u_j)$, and
2. $p|_{N(u)} : N(u) \to N(p(u))$ forms a bijection where $N(u) = \{u_i | u \sim u_i\}$.
Covering Graphs

Example
Suppose that G is a group with generating set S. The symmetric ($S = S^{-1}$) Cayley Graph, $Cay(G, S)$ is a graph such that
Covering Graphs

Example

Suppose that G is a group with generating set S. The symmetric ($S = S^{-1}$) Cayley Graph, $Cay(G, S)$ is a graph such that

1. Each element $g \in G$ is assigned a vertex in the vertex set $V(G)$
Covering Graphs

Example

Suppose that G is a group with generating set S. The symmetric $(S = S^{-1})$ Cayley Graph, $\text{Cay}(G, S)$ is a graph such that

1. Each element $g \in G$ is assigned a vertex in the vertex set $V(G)$

2. For any $g \in G, s \in S$, the vertices g and gs are joined by a line. Therefore the edge set $E(G)$ consists of pairs of the form (g, gs).
Covering Graphs

Example
Suppose that G is a group with generating set S. The symmetric \((S = S^{-1})\) Cayley Graph, \(Cay(G, S)\) is a graph such that

1. Each element \(g \in G\) is assigned a vertex in the vertex set \(V(G)\)

2. For any \(g \in G, s \in S\), the vertices \(g\) and \(gs\) are joined by a line. Therefore the edge set \(E(G)\) consists of pairs of the form \((g, gs)\).

If \(\exists\) a surjective homomorphism \(G \longrightarrow H\), then the map

\[p : Cay(G, S) \longrightarrow Cay(H, p(S)) \]

is a covering map.
Graph Covers

Voltage Assignment
The purpose of having a voltage assignment is to have a way of constructing a graph bundle, or more specifically for our case a graph cover. We will use them to determine the Zeta Function of a covering graph.
Graph Covers

Voltage Assignment

The purpose of having a *voltage assignment* is to have a way of constructing a graph bundle, or more specifically for our case a graph cover. We will use them to determine the Zeta Function of a covering graph.

Essentially it is a labeling of the edges of the base graph with elements from a group Ω which form the graph bundle.
Graph Covers

Voltage Assignment

The purpose of having a *voltage assignment* is to have a way of constructing a graph bundle, or more specifically for our case a graph cover. We will use them to determine the Zeta Function of a covering graph.

Essentially it is a labeling of the edges of the base graph with elements from a group Ω which form the graph bundle.

We will let the graph covers form naturally and retrieve the voltage assignment.
Method for Determining the Ihara Zeta Function

From Chae and Lee,

Theorem
Let \(\Omega = \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_l} \) and let \(\phi \) be a \(\Omega \)-voltage assignment of \(G \). Then, the adjacency matrix of a regular covering graph \(G \times^\phi \Omega \) is

\[
\sum_{(k_1, \cdots, k_l)} A(\tilde{G}_{\phi,(\rho_1^{k_1}, \cdots, \rho_l^{k_l})}) \otimes P(\rho_1^{k_1}, \cdots, \rho_l^{k_l}),
\]

where \(P(\rho_1^{k_1}, \cdots, \rho_l^{k_l}) \) is the permutation matrix associated with \((\rho_1^{k_1}, \cdots, \rho_l^{k_l}) \).
Motivation of Project

The modular group often seen as $PSL_2(\mathbb{Z})$ or $SL_2(\mathbb{Z})$ is a fundamental object of study in number theory and has many connections to other areas of mathematics.

We hope that finding the zeta function of the modular group will give us more insight on this important group.

To accomplish this, we will set up sequences of quotient groups, which will be associated with a sequence of Cayley graphs.
Set-up

Let \(\Gamma = PSL_2(\mathbb{Z}) \) and

\[
\Gamma_n = \ker \left(PSL_2(\mathbb{Z}) \longrightarrow PSL_2(\mathbb{Z}/2^n) \right), \text{ for each } n \geq 1.
\]
Set-up

Let $\Gamma = PSL_2(\mathbb{Z})$ and

$\Gamma_n = \ker(PSL_2(\mathbb{Z}) \longrightarrow PSL_2(\mathbb{Z}/2^n))$, for each $n \geq 1$.

It is known that $PSL_2(\mathbb{Z})/\Gamma_n \simeq PSL_2(\mathbb{Z}/2^n)$. Therefore, we can form quotient groups Γ/Γ_n, from which we will construct Cayley graphs.
Consider the Cayley Graph of the quotient group denoted by $\text{Cay}(\Gamma/\Gamma_n, S)$, where

$$S = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$$

is the generating set of the Cayley graph.
The following Cayley graphs induce a covering map since there is a surjective map $\pi : \Gamma/\Gamma_{n+1} \longrightarrow \Gamma/\Gamma_n$.

$PSL_2(\mathbb{Z})$
The following Cayley graphs induce a covering map since there is a surjective map \(\pi : \Gamma / \Gamma_{n+1} \longrightarrow \Gamma / \Gamma_n \),

\[
\pi : \text{Cay}(\Gamma / \Gamma_{n+1}, S) \longrightarrow \text{Cay}(\Gamma / \Gamma_n, S)
\]
The following Cayley graphs induce a covering map since there is a surjective map \(\pi : \Gamma / \Gamma_{n+1} \longrightarrow \Gamma / \Gamma_n, \)

\[
\pi : \text{Cay}(\Gamma / \Gamma_{n+1}, S) \longrightarrow \text{Cay}(\Gamma / \Gamma_n, S)
\]

Each vertex of the graph will represent an element in the subgroups. The graphs will be 3-regular because there are three generators for each subgroup. Note that the voltage assignment for these coverings will always come from \(\Omega = \Gamma_n / \Gamma_{n+1} = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}. \)
Currently trying to generalize the sequence of graph covers by generalizing the subgraphs \vec{G}.

$$A(\vec{G}, (\rho_1^{k_1}, \ldots, \rho_l^{k_l}))$$