Description

A collection and description of functions to valuate basic American options. Approximative formulas for American calls are given for the Roll, Geske and Whaley Approximation, for the Barone-Adesi and Whaley Approximation, and for the Bjerksund and Stensland Approximation.

The functions are:

- `rollgeskewhaleyoption` - Roll, Geske and Whaley Approximation,
- `bawamericanapproxoption` - Barone-Adesi and Whaley Approximation,
- `bsamericanapproxoption` - Bjerksund and Stensland Approximation.

Usage

- `rollgeskewhaleyoption(S, X, time1, Time2, r, D, sigma, title = NULL, description = NULL)`
- `bawamericanapproxoption(TypeFlag, S, X, Time, r, b, sigma, title = NULL, description = NULL)`
- `bsamericanapproxoption(TypeFlag, S, X, Time, r, b, sigma, title = NULL, description = NULL)`

Arguments

- `b` - the annualized cost-of-carry rate, a numeric value; e.g. 0.1 means 10% pa.
- `D` - a single dividend with time to dividend payout `t1`.
- `description` - a character string which allows for a brief description.
- `r` - the annualized rate of interest, a numeric value; e.g. 0.25 means 25% pa.
- `S` - the asset price, a numeric value.
- `sigma` - the annualized volatility of the underlying security, a numeric value; e.g. 0.3 means 30% volatility pa.
- `Time` - the time to maturity measured in years, a numeric value.
- `time1, Time2` - first value measures time to dividend payout in years, e.g. 0.25 denotes a quarter, and the second value measures time to maturity measured in years, a numeric value; e.g. 0.5 means 6 months.
- `title` - a character string which allows for a project title.
- `TypeFlag` - a character string either "c" for a call option or a "p" for a put option.
- `X` - the exercise price, a numeric value.
BasicAmericanOptions

Details

Roll-Geske-Whaley Option:

The function RollGeskeWhaleyOption valuates American calls on a stock paying a single dividend with specified time to dividend payout according to the pricing formula derived by Roll, Geske and Whaley (1977).

Approximations for American Options:

The function BSAmericanApproxOption valuates American calls or puts on an underlying asset for a given cost-of-carry rate according to the quadratic approximation method due to Barone-Adesi and Whaley (1987). The function BSAmericanApproxOption valuates American calls or puts on stocks, futures, and currencies due to the approximation method of Bjerksund and Stensland (1993).

Value

RollGeskeWhaleyOption
BSAmericanApproxOption
returns the option price, a numeric value.

BSAmericanApproxOption
returns a list with the following two elements: Premium the option price, and TriggerPrice the trigger price.

Note

The functions implement the algorithms to valuate basic American options as described in Chapter 1.4 of Haug’s Option Guide (1997).

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

References

Examples

All the examples are from Haug’s Option Guide (1997)

CHAPTER 1.4: ANALYTICAL MODELS FOR AMERICAN OPTIONS

Roll-Geske-Whaley American Calls on Dividend Paying Stocks [Haug 1.4.1]

```
RollGeskeWhaleyOption(S = 80, X = 82, time1 = 1/4, 
Time2 = 1/3, r = 0.06, D = 4, sigma = 0.30)
```

Barone-Adesi and Whaley Approximation for American Options [Haug 1.4.2] vs. Black76 Option on Futures:

```
BAAmericanApproxOption(TypeFlag = "p", S = 100, 
X = 100, Time = 0.5, r = 0.10, b = 0, sigma = 0.25)
Black76Option(TypeFlag = "c", FT = 100, X = 100, 
Time = 0.5, r = 0.10, sigma = 0.25)
```

Bjerkuskand Stensland Approximation for American Options:

```
BSAmericanApproxOption(TypeFlag = "c", S = 42, X = 40, 
Time = 0.75, r = 0.04, b = 0.04-0.08, sigma = 0.35)
```

BinomialTreeOptions
Binomial Tree Option Model

Description

A collection and description of functions to valuate options in the framework of the Binomial tree option approach.

The functions are:

- `CRRBinomialTreeOption`
- `JRBinomialTreeOption`
- `TIANBinomialTreeOption`
- `BinomialTreeOption`
- `BinomialTreePlot`

Usage

```
CRRBinomialTreeOption(TypeFlag = c("ce", "pe", "ca", "pa"), S, X, 
Time, r, b, sigma, n, title = NULL, description = NULL)
JRBinomialTreeOption(TypeFlag = c("ce", "pe", "ca", "pa"), S, X, 
Time, r, b, sigma, n, title = NULL, description = NULL)
TIANBinomialTreeOption(TypeFlag = c("ce", "pe", "ca", "pa"), S, X, 
Time, r, b, sigma, n, title = NULL, description = NULL)
BinomialTreeOption(TypeFlag = c("ce", "pe", "ca", "pa"), S, X, 
Time, r, b, sigma, n, title = NULL, description = NULL)
```
BinomialTreeOptions

\[\text{BinomialTreePlot(BinomialTreeValues, dx = -0.025, dy = 0.4, cex = 1, digits = 2, ...)} \]

Arguments

- **b**: the annualized cost-of-carry rate, a numeric value; e.g. 0.1 means 10% pa.
- **binomialtreevalues**: the return value from the BinomialTreeOption function.
- **cex**: a numerical value giving the amount by which the plotting text and symbols should be scaled relative to the default.
- **description**: a character string which allows for a brief description.
- **digits**: an integer value, how many digits should be displayed in the option tree?
- **dx, dy**: numerical values, an offset fine tuning for the placement of the option values in the option tree.
- **n**: number of time steps; an integer value.
- **r**: the annualized rate of interest, a numeric value; e.g. 0.25 means 25% pa.
- **S**: the asset price, a numeric value.
- **sigma**: the annualized volatility of the underlying security, a numeric value; e.g. 0.3 means 30% volatility pa.
- **time**: the time to maturity measured in years, a numeric value; e.g. 0.5 means 6 months.
- **title**: a character string which allows for a project title.
- **TypeFlag**: a character string either "ce", "ca" for an European or American call option or a "pe", "pa" for a put option, respectively.
- **X**: the exercise price, a numeric value.
- **...**: arguments to be passed.

Details

CRR Binomial Tree Model:

Binomial models were first suggested by Cox, Ross and Rubinstein (1979), CRR, and then became widely used because of its intuition and easy implementation. Binomial trees are constructed on a discrete-time lattice. With the time between two trading events shrinking to zero, the evolution of the price converges weakly to a lognormal diffusion. Within this mode the European options value converges to the value given by the Black-Scholes formula.

JR Binomial Tree Model:

There exist many extensions of the CRR model. Jarrow and Rudd (1983), JR, adjusted the CRR model to account for the local drift term. They constructed a binomial model where the first two moments of the discrete and continuous time return processes match. As a consequence a probability measure equal to one half results. Therefore the CRR and JR models are sometimes attributed as equal jumps binomial trees and equal probabilities binomial trees.
TIAN Binomial Tree Model:

Tian (1993) suggested to match discrete and continuous local moments up to third order.
Leisen and Reimer (1996) proved that the order of convergence in pricing European options for all
three methods is equal to one, and thus the three models are equivalent.

Value

The option price, a numeric value.

Note

Note, the BinomialTree and BinomialTreePlot are preliminary implementations.

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

References

Examples

```r
## Cox-Ross-Rubinstein Binomial Tree Option Model:
# Example 14.1 from Hull's Book:
CRRBinomialTreeOption(TypeFlag = "pa", S = 50, X = 50,
    Time = 5/12, r = 0.1, b = 0.1, sigma = 0.4, n = 5)
# Example 3.1.1 from Haug's Book:
CRRBinomialTreeOption(TypeFlag = "pa", S = 100, X = 95,
    Time = 0.5, r = 0.08, b = 0.08, sigma = 0.3, n = 5)
# A European Call - Compare with Black Scholes:
CRRBinomialTreeOption(TypeFlag = "ce", S = 100, X = 100,
    Time = 1, r = 0.1, b = 0.1, sigma = 0.25, n = 50)
GBSOption(TypeFlag = "c", S = 100, X = 100,
    Time = 1, r = 0.1, b = 0.1, sigma = 0.25)@price

## CRR - JR - TIAN Model Comparison:
# Hull's Example as Function of "n":
```
par(mfrow = c(2, 1), cex = 0.7)
steps = 50
CRROptionValue = JROptionValue = TIANOptionValue = rep(NA, times = steps)
for (n in 3:steps)
 CRROptionValue[n] = CRRBinomialTreeOption(TypeFlag = "pa", S = 50,
 X = 50, Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = n)
 JROptionValue[n] = JRBinomialTreeOption(TypeFlag = "pa", S = 50,
 X = 50, Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = n)
 TIANOptionValue[n] = TIANBinomialTreeOption(TypeFlag = "pa", S = 50,
 X = 50, Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = n)

plot(CRROptionValue[3:steps], type = "l", col = "red", ylab = "Option Value")
lines(JROptionValue[3:steps], col = "green")
lines(TIANOptionValue[3:steps], col = "blue")
Add Result from BAW Approximation:
BAWValue = BAWAmericanApproxOption(TypeFlag = "p", S = 50, X = 50,
 Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4)
abline(h = BAWValue, lty = 3)
title(main = "Convergence")
data.frame(CRROptionValue, JROptionValue, TIANOptionValue)

Plot CRR Option Tree:
Again Hull's Example:
CRRTree = BinomialTreeOption(TypeFlag = "pa", S = 50, X = 50,
 Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = 5)
BinomialTreePlot(CRRTree, dy = 1, cex = 0.8, ylim = c(-6, 7),
 xlab = "n", ylab = "Option Value")
title(main = "Option Tree")

HestonNandiGarchFit Heston-Nandi Garch(1,1) Modelling

Description

A collection and description of functions to model the GARCH(1,1) price paths which underly Heston and Nandi’s option pricing model.

The functions are:

- `hngarchSim`: Simulates a Heston-Nandi Garch(1,1) process,
- `hngarchFit`: MLE for a Heston Nandi Garch(1,1) model,
- `hngarchStats`: True moments of the log-Return distribution,
- `print.hngarch`: Print method,
- `summary.hngarch`: Diagnostic summary.
Usage

hngarchSim(model, n, innov, n.start, start.innov, rand.gen, ...)
hngarchFit(x, model = list(lambda = -0.5, omega = var(x), alpha = 0.1 * var(x), beta = 0.1, gamma = 0, rf = 0), symmetric = TRUE, trace = FALSE, title = NULL, description = NULL, ...)
hngarchStats(model)

S3 method for class 'hngarch'
print(x, ...)
S3 method for class 'hngarch'
summary(object, ...)

Arguments

description
 a brief description of the project of type character.

innov [hngarchSim] -
 is a univariate time series or vector of innovations to produce the series. If not provided, innov will be generated using the random number generator specified by rand.gen. Missing values are not allowed. By default the normal random number generator will be used.

model [hngarchSim] -
 a list of GARCH model parameters with the following entries: lambda, omega, the constant coefficient of the variance equation, alpha the autoregressive coefficient, beta the variance coefficient, gamma the asymmetry coefficient, and rf, the risk free rate, numeric values.

n [hngarchSim] -
 is the length of the series to be simulated. The default value is 1000.

n.start [hngarchSim] -
 gives the number of start-up values to be discarded. The default value is 100.

object [summary] -
 a fitted HN-GARCH(1,1) time series object of class "hngarch" as returned from the function hngarchFit.

rand.gen [hngarchSim] -
 is the function which is called to generate the innovations. Usually, rand.gen will be a random number generator. Additional arguments required by the random number generator rand.gen, usually the location, scale and/or shape parameter of the underlying distribution function, have to be passed through the dots argument.

start.innov [hngarchSim] -
 is a univariate time series or vector of innovations to be used as start up values. Missing values are not allowed.

symmetric [hngarchFit] -
 a logical, if TRUE a symmetric model is estimated, otherwise the parameters are estimated for an asymmetric HN Garch(1,1) model.

title
 a character string which allows for a project title.
trace [hngarchFit] -
a logical value. Should the optimizacion be traced? If trace=FALSE, no tracing
is done of the iteration path.

x [hngarchFit] -
an univariate vector or time series.
[print] -
a fitted HN-GARCH(1,1) time series object of class "hngarch" as returned from
the function hngarchFit.

... additional arguments to be passed.

Details

Path Simulation:

The function hngarchSim simulates a Heston-Nandi Garch(1,1) process with structure parameters
specified through the list model(lambda, omega, alpha, beta, gamma, rf).

Parameter Estimation:

The function hngarchFit estimates by the maximum log-likelihood approach the parameters ei-
er for a symmetric or an asymmetric Heston-Nandi Garch(1,1) model from the log returns x of a
financial time series. For optimization R’s optim function is used. Additional optimization param-
eters may be passed throught the ... argument.

Diagnostic Analysis:

The function summary.hngarch performs a diagnostic analysis and recalculates conditional vari-
ances and innovations from the time series.

Calculation of Moments:

The function hngarchStats calculates the first four true moments of the unconditional log return
distribution for a stationary Heston-Nandi Garch(1,1) process with standard normally distributed
innovations. In addition the persistence and the expectation values of sigma to the power 2, 4, 6,
and 8 can be accessed.

Value

hngarchSim
returns numeric vector with the simulated time series points neglecting those from the first start.innov
innovations.

hngarchFit
returns list with two entries: The estimated model parameters model, where model is a list of the
parameters itself, and llh the value of the log likelihood.
hngarchStats
returns a list with the following components: persistence, the value of the persistence, meansigma2, meansigma4, meansigma6, meansigma8, the expectation value of sigma to the power of 2, 4, 6, and 8, mean, variance, skewness, kurtosis, the mean, variance, skewness and kurtosis of the log returns.

summary.hngarch
returns list with the following elements: h, a numeric vector with the conditional variances, z, a numeric vector with the innovations.

Author(s)
Diethelm Wuertz for the Rmetrics R-port.

References
Heston S.L., Nandi S. (1997); A Closed-Form GARCH Option Pricing Model, Federal Reserve Bank of Atlanta.

Examples

```r
## hngarchSim -
# Simulate a Heston Nandi Garch(1,1) Process:
# Symmetric Model - Parameters:
model = list(lambda = 4, omega = 8e-5, alpha = 6e-5,
            beta = 0.7, gamma = 0, rf = 0)
hs = hngarchsim(model = model, n = 500, n.start = 100)
par(mfrow = c(2, 1), cex = 0.75)
ts.plot(hs, col = "steelblue", main = "HN Garch Symmetric Model")
grid()

## hngarchFit -
# HN-GARCH log likelihood Parameter Estimation:
# To speed up, we start with the simulated model ...
mle = hngarchfit(model = model, x = hs, symmetric = TRUE)
mle

## summary.hngarch -
# HN-GARCH Diagnostic Analysis:
par(mfrow = c(3, 1), cex = 0.75)
summary(mle)

## hngarchStats -
# HN-GARCH Moments:
hngarchstats(mle$model)
```
Description

A collection and description of functions to valuate Heston-Nandi options. Included are functions to compute the option price and the delta and gamma sensitivities for call and put options.

The functions are:

- `HNGOption` Heston-Nandi GARCH(1,1) option price,
- `HNGGreeks` Heston-Nandi GARCH(1,1) option sensitivities,
- `HNGCharacteristics` option prices and sensitivities.

Usage

```r
HNGOption(TypeFlag, model, S, X, Time.inDays, r.daily)
HNGGreeks(Selection, TypeFlag, model, S, X, Time.inDays, r.daily)
HNGCharacteristics(TypeFlag, model, S, X, Time.inDays, r.daily)
```

Arguments

- `model` a list of model parameters with the following entries: lambda, omega, alpha, beta, and gamma, numeric values.
- `r.daily` the daily rate of interest, a numeric value; e.g. 0.25/252 means about 0.001% per day.
- `S` the asset price, a numeric value.
- `Selection` sensitivity to be computed, one of "delta", "gamma", "vega", "theta", "rho", or "CoC", a string value.
- `Time.inDays` the time to maturity measured in days, a numerical value; e.g. 5/252 means 1 business week.
- `TypeFlag` a character string either "c" for a call option or a "p" for a put option.
- `X` the exercise price, a numeric value.

Details

Option Values:

`HNGOption` calculates the option price, `HNGGreeks` allows to compute the option sensitivity Delta or Gamma, and `HNGcharacterisitics` summarizes both in one function call.

Value

`HNGOption` returns a list object of class "option" with `price` denoting the option price, a numeric value, and
$call a character string which matches the function call.

HNG

returns the option sensitivity for the selected Greek, either "delta" or "gamma"; a numeric value.

HNGCharacteristics

returns a list with the following entries:

- **premium**: the option price, a numeric value.
- **delta**: the delta sensitivity, a numeric value.
- **gamma**: the gamma sensitivity, a numeric value.

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

References

Examples

```r
## model -
# Define the Model Parameters for a Heston-Nandi Option:
model = list(lambda = -0.5, omega = 2.3e-6, alpha = 2.9e-6,
              beta = 0.85, gamma = 184.25)
S = X = 100
Time.inDays = 252
r.daily = 0.05/Time.inDays
sigma.daily = sqrt((model$omega + model$alpha) /
                   (1 - model$beta - model$alpha * model$gamma^2))
data.frame(S, X, r.daily, sigma.daily)

## HNGOption -
# Compute HNG Call-Put and compare with GBS Call-Put:
HNG = GBS = Diff = NULL
for (TypeFlag in c("c", "p")) {
  HNG = c(HNG, HNGOption(TypeFlag, model = model, S = S, X = X,
                         Time.inDays = Time.inDays, r.daily = r.daily)$price)
  GBS = c(GBS, GBSOption(TypeFlag, S = S, X = X, Time = Time.inDays,
                        r = r.daily, b = r.daily, sigma = sigma.daily)$price)
  Options = cbind(HNG, GBS, Diff = round(100*(HNG-GBS)/GBS, digits=2))
  row.names(Options) <- c("Call", "Put")
data.frame(Options)
}

## HNGGreens -
# Compute HNG Greeks and compare with GBS Greeks:
Selection = c("Delta", "Gamma")
HNG = GBS = NULL
for (i in 1:2){
Low Discrepancy Sequences

Description

A collection and description of functions to compute Halton’s and Sobol’s low discrepancy sequences, distributed in form of a uniform or normal distribution.

The functions are:

- runif.halton: Uniform Halton sequence,
- rnorm.halton: Normal Halton sequence,
- runif.sobol: Uniform scrambled Sobol sequence,
- rnorm.sobol: Normal scrambled Sobol sequence,
- runif.pseudo: Uniform pseudo random numbers,
- norma.pseudo: Normal pseudo random numbers.

Usage

- runif.halton(n, dimension, init)
- rnorm.halton(n, dimension, init)
- runif.sobol(n, dimension, init, scrambling, seed)
- rnorm.sobol(n, dimension, init, scrambling, seed)
- runif.pseudo(n, dimension, init)
- rnorm.pseudo(n, dimension, init)

Arguments

- dimension: an integer value, the dimension of the sequence. The maximum value for the Sobol generator is 1111.
- init: a logical, if TRUE the sequence is initialized and restarts, otherwise not. By default TRUE.
- n: an integer value, the number of random deviates.
- scrambling: an integer value, if 1, 2 or 3 the sequence is scrambled otherwise not. If 1, Owen type of scrambling is applied, if 2, Faure-Tezuka type of scrambling, is applied, and if 3, both Owen+Faure-Tezuka type of scrambling is applied. By default 0.
seed an integer value, the random seed for initialization of the scrambling process. By default 4711. On effective if scrambling>0.

Details

**Halton’s Low Discrepancy Sequences:**

Calculates a matrix of uniform or normal deviated halton low discrepancy numbers.

**Scrambled Sobol’s Low Discrepancy Sequences:**

Calculates a matrix of uniform and normal deviated Sobol low discrepancy numbers. Optional scrambling of the sequence can be selected.

**Pseudo Random Number Sequence:**

Calculates a matrix of uniform or normal distributed pseudo random numbers. This is a helpful function for comparing investigations obtained from a low discrepancy series with those from a pseudo random number.

Value

All generators return a numeric matrix of size $n$ by `dimension`.

Note

The global variables `runif.halton.seed` and `runif.sobol.seed` save the status to restart the generators. Note, that only one instance of a generators can be run at the same time.

The ACM Algorithm 659 implemented to generate scrambled Sobol sequences is under the License of the ACM restricted for academic and noncommerical usage. Please consult the ACM License agreement included in the doc directory.

Author(s)

P. Bratley and B.L. Fox for the Fortran Sobol Algorithm 659, S. Joe for the Fortran extension to 1111 dimensions, Diethelm Wuertz for the Rmetrics R-port.

References


Joe S., Kuo F.Y. (1998); *Remark on Algorithm 659: Implementing Sobol’s Quasirandom Sequence Generator*. 
MonteCarloOptions

Examples

```r
*halton -
par(mfrow = c(2, 2), cex = 0.75)
runif.halton(n = 10, dimension = 5)
hist(runif.halton(n = 5000, dimension = 1), main = "Uniform Halton",
 xlab = "x", col = "steelblue3", border = "white")
runif.halton(n = 10, dimension = 5)
hist(rnorm.halton(n = 5000, dimension = 1), main = "Normal Halton",
 xlab = "x", col = "steelblue3", border = "white")

*sobol -
runif.sobol(n = 10, dimension = 5, scrambling = 3)
hist(runif.sobol(5000, 1, scrambling = 2), main = "Uniform Sobol",
 xlab = "x", col = "steelblue3", border = "white")
rnorm.sobol(n = 10, dimension = 5, scrambling = 3)
hist(rnorm.sobol(5000, 1, scrambling = 2), main = "Normal Sobol",
 xlab = "x", col = "steelblue3", border = "white")

*pseudo -
runif.pseudo(n = 10, dimension = 5)
rnorm.pseudo(n = 10, dimension = 5)
```

MonteCarloOptions  Monte Carlo Valuation of Options

Description

A collection and description of functions to valuate options by Monte Carlo methods. The functions include beside the main Monte Carlo Simulator, example functions to generate Monte Carlo price paths and to compute Monte Carlo price payoffs.

The functions are:

- `sobolInnovations`: Example for scrambled Sobol innovations,
- `wienerPath`: Example for a Wiener price path,
- `plainVanillaPayoff`: Example for the plain vanilla option’s payoff,
- `arithmeticAsianPayoff`: Example for the arithmetic Asian option’s payoff,
- `MonteCarloOption`: Monte Carlo Simulator for options.

Usage

```r
MonteCarloOption(delta.t, pathLength, mcSteps, mcLoops, init = TRUE,
 innovations.gen, path.gen, payoff.calc, antithetic = TRUE,
 standardization = FALSE, trace = TRUE, ...)
```

Arguments

- `antithetic`: a logical flag, should antithetic variates be used? By default TRUE.
MonteCarloOptions

delta.t  the time step interval measured as a fraction of one year, by default one day, i.e. \( \text{delta.t} = 1/360 \).

init  a logical flag, should the random number generator be initialized? By default TRUE.

innovations.gen  a user defined function to generate the innovations, this can be the normal random number generator \( \text{rnorm.pseudo} \) with mean zero and variance one. For the usage of low discrepancy sequences alternatively \( \text{rnorm.halton} \) and \( \text{rnorm.sobol} \) can be called. The generator must deliver a normalized matrix of innovations with dimension given by the number of Monte Carlo steps and the path length. The first three arguments of the generator are the the number of Monte Carlo steps \( \text{mcSteps} \), the path length \( \text{pathLength} \) and the initialization flag \( \text{init} \). Optional arguments can be passed through the argument \( \ldots \), e.g. the type of scrambling for low discrepancy numbers.

mcLoops, mcSteps  the number of Monte Carlo loops and Monte Carlo Steps. In total \( \text{mcLoops} \times \text{mcSteps} \) samples are included in one MC simulation.

path.gen  the user defined function to generate the price path. As the only input argument serves the matrix of innovations, the option parameters must be available as global variables.

pathLength  the length of the price path. This may be calculated as \( \text{floor} (\text{Time/\text{delta.t}}) \), where \( \text{Time} \) denotes the time to maturation measured in years.

payoff.calc  a user defined function to calculate the payoff of the option. As the only input argument serves the path matrix as returned by the path generator. The option parameters must be available as global variables.

standardization  a logical flag, should the innovations for one loop be standardized? By default TRUE.

trace  a logical flag, should the Monte Carlo simulation be traced? By default TRUE.

Details

The Innovations:

The innovations must created by the user defined innovation generator. The Generator has to return a numeric matrix of (random) innovations of size \( \text{mcSteps} \) times the \( \text{pathLength} \). The example section shows how to write a function for scrambled Quasi Monte Carlo Sobol numbers. The package comes with three generators \( \text{rnorm.pseudo}, \text{rnorm.halton} \) and \( \text{rnorm.sobol} \) which can easily be used for simulations.

The Price Paths:

The user must provide a function which generates the price paths. In the example section the function \( \text{wienerPath} \) creates a Wiener Monte Carlo path from random innovations. The Wiener price path requires as input \( \text{b} \), the annualized cost-of-carry rate, and \( \text{sigma} \), the annualized volatility.
of the underlying security, to compute the drift and variance of the path, these variables must be
globally defined.

**The Payoff Function:**

The user must also provide a function which computes the payoff value of the option. The example
sections show how to write payoff calculators for the plain vanilla option and for the arithmetic
Asian Option. As the only input argument the path matrix is required. Again, the option parameters
must be globally available.

**The Monte Carlo Simulator:**

The simulator is the heart of the Monte Carlo valuation process. This simulator performs `mcLoops`
Monte Carlo loops each with `mcSteps` Monte Carlo steps. In each loop the following steps are
done: first the innovation matrix is created from the specified innovation generator (usually build
from the normal pseudo random number or low discrepancy generators), then antithetic innovations
are added if desired (by default `antithetic=TRUE`), then the innovations can be standardized within
each loop (by default `standardization=FALSE`), and finally the average payoff of all samples in
the loop is computed. The simulation can be traced loop by loop setting the argument `trace=TRUE`.

**Value**

*The user defined innovation generator* returns a numeric matrix of (random) innovations to build the Monte Carlo Paths.

*The user defined path generator* returns a numeric matrix of the Monte Carlo paths for the calculation of the option’s payoffs. To be
more precise, as an example the function returns for a Wiener process the matrix $(b-sigma*sigma/2)*delta.t + sigma*sqrt(delta.t)$
where the first term corresponds to the drift and the second to the volatility.

*The user defined payoff calculator*, returns the vector of the option’s payoffs calculated from the generated paths. As an example this be-
comes for an arithmetic Asian call option with a Wiener Monte Carlo path payoff $= \exp(-r*Time)*\max(SM-X, 0)$
where $SM = \text{mean}(S*\exp(cumsum(path)))$ and path denotes the MC price paths.

**MonteCarloOption:** returns a vector with the option prices for each Monte Carlo loop.

**Author(s)**

Diethelm Wuertz for the Rmetrics R-port.

**References**

Birge J.R. (1994); *Quasi-Monte Carlo Approaches to Option Pricing*, Department of Industrial and

Examples

## How to perform a Monte Carlo Simulation?

### First Step:
1. Write a function to generate the option's innovations.
2. Use scrambled normal Sobol numbers:
   ```
 sobolInnovations = function(mcSteps, pathLength, init, ...) {
 # Create Normal Sobol Innovations:
 innovations = rnorm.sobol(mcSteps, pathLength, init, ...)
 # Return Value:
 innovations
 }
   ```

### Second Step:
1. Write a function to generate the option's price paths.
2. Use a Wiener path:
   ```
 wienerPath = function(eps) {
 # Note, the option parameters must be globally defined!
 # Generate the Paths:
 path = (b-sigma*sigma/2)*delta.t + sigma*sqrt(delta.t)*eps
 # Return Value:
 path
 }
   ```

### Third Step:
1. Write a function for the option's payoff

   **Example 1:** use the payoff for a plain Vanilla Call or Put:
   ```
 plainVanillaPayoff = function(path) {
 # Note, the option parameters must be globally defined!
 # Compute the Call/Put Payoff Value:
 ST = S*exp(sum(path))
 if (TypeFlag == "c") payoff = exp(-r*Time)*max(ST-X, 0)
 if (TypeFlag == "p") payoff = exp(-r*Time)*max(0, X-ST)
 # Return Value:
 payoff
 }
   ```

   **Example 2:** use the payoff for an arithmetic Asian Call or Put:
   ```
 arithmeticAsianPayoff = function(path) {
 # Note, the option parameters must be globally defined!
 # Compute the Call/Put Payoff Value:
 SM = mean(S*exp(cumsum(path)))
 if (TypeFlag == "c") payoff = exp(-r*Time)*max(SM-X, 0)
 if (TypeFlag == "p") payoff = exp(-r*Time)*max(0, X-SM)
 # Return Value:
 payoff
 }
   ```

### Final Step:
# Set Global Parameters for the plain Vanilla / arithmetic Asian Options:
TypeFlag <- "c"; S <- 100; X <- 100
Time <- 1/12; sigma <- 0.4; r <- 0.10; b <- 0.1

# Do the asian simulation with scrambled random numbers:
mc = MonteCarloOption(delta.t = 1/360, pathLength = 30, mcSteps = 5000,
mcLoops = 50, init = TRUE, innovations.gen = sobolInnovations,
path.gen = wienerPath, payoff.calc = arithmeticAsianPayoff,
antithetic = TRUE, standardization = FALSE, trace = TRUE,
scrambling = 2, seed = 4711)

# Plot the MC Iteration Path:
par(mfrow = c(1, 1))
mcPrice = cumsum(mc)/(1:length(mc))
plot(mcPrice, type = "l", main = "Arithmetic Asian Option",
    xlab = "Monte Carlo Loops", ylab = "Option Price")

# Compare with Turnbull-Wakeman Approximation:
TW = TurnbullWakemanAsianApproxOption(TypeFlag = "c", S = 100, SA = 100,
    X = 100, Time = 1/12, tau = 0 , r = 0.1, b = 0.1,
    sigma = 0.4)
print(TW)
abline(h = TW, col = 2)

PlainVanillaOptions  Valuation of Plain Vanilla Options

Description
A collection and description of functions to valuate plain vanilla options. Included are functions for
the Generalized Black-Scholes option pricing model, for options on futures, some utility functions,
and print and summary methods for options.

The functions are:

GBS* the generalized Black-Scholes option,
BlackScholesOption a synonyme for the GBSOption,
Black76Option options on Futures,
MiltersenSchwartzOption options on commodity futures,
NDF, CND, CBND distribution functions,
print print method for Options,
summary summary method for Options.

Usage
GBSOption(TypeFlag, S, X, Time, r, b, sigma,
title = NULL, description = NULL)
GBSGreeks(Selection, TypeFlag, S, X, Time, r, b, sigma)
GBSCharacteristics(TypeFlag, S, X, Time, r, b, sigma)
GBSVolatility(price, TypeFlag, S, X, Time, r, b, tol, maxiter)
BlackScholesOption(...)

Black76Option(TypeFlag, FT, X, Time, r, sigma,
    title = NULL, description = NULL)

MiltersenSchwartzOption(TypeFlag, Pt, FT, X, time, Time,
    sigmaS, sigmaE, sigmaF, rhoSE, rhoSF, rhoEF, KappaE, KappaF,
    title = NULL, description = NULL)

NDF(x)
CND(x)
CBND(x1, x2, rho)

## S4 method for signature 'fOPTION'
show(object)
## S3 method for class 'fOPTION'
summary(object, ...)

## S3 method for class 'option'
print(x, ...)
## S3 method for class 'option'
summary(object, ...)
yield (SE), between the spot commodity price and the forward interest rate (SF),
between the forward interest rate and the future convenience yield (EF), a nu-
meric value.

S the asset price, a numeric value.
Selection [GBSGreeks] -
sensitivity to be computed, one of "delta", "gamma", "vega", "theta", "rho", or "CoC", a string value.
sigma the annualized volatility of the underlying security, a numeric value; e.g. 0.3
means 30% volatility pa.
sigmaS, sigmaE, sigmaF
[MillersenSchwartz*] -
numeric values, the annualized volatility of the spot commodity price (S), of
the future convenience yield (E), and of the forward interest rate (F), e.g. 0.25
means 25% pa.
time, Time the time to maturity measured in years, a numeric value.
title a character string which allows for a project title.
TypeFlag a character string either "c" for a call option or a "p" for a put option.
x, x1, x2, rho [NDF][CND][CBND] -
the function argument x for the normal distribution function NDF and the cu-
mulated normal distribution CND. The arguments for the bivariate function are
named x1 and x2; rho is the correlation coefficient.
[print] -
the object x to be printed.
X a numeric value, the exercise price.
... arguments to be passed.

Details

Generalized Black Scholes Options:

GBSOption calculates the option price, GBSGreeks calculates option sensitivities delta, theta, vega,
rho, lambda and gamma, and GBSCharacteristics does both. GBSVolatility computes the im-
plied volatility.
Note, that setting b = r we get Black and Scholes’ stock option model, b = r-q we get Merton’s
stock option model with continuous dividend yield q, b = 0 we get Black’s futures option model,
and b = r-rf we get Garman and Kohlhagen’s currency option model with foreign interest rate rf.

Options on Futures:

The Black76Option pricing formula is applicable for valuing European call and European put
options on commodity futures. The exact nature of the underlying commodity varies and may be
anything from a precious metal such as gold or silver to agricultural products.
The Miltersen Schwartz Option model is a three factor model with stochastic futures prices,
term structures and convenience yields, and interest rates. The model is based on lognormal dis-
tributed commodity prices and normal distributed continuously compounded forward interest rates.
and future convenience yields.

**Miltersen Schwartz Options:**

The MiltersenSchwartzOption function allows for pricing options on commodity futures. The model is a three factor model with stochastic futures prices, term structures of convenience yields, and interest rates. The model is based on lognormal distributed commodity prices and normal distributed continuously compounded forward interest rates and futures convenience yields.

**Distribution Functions:**

The functions NDF, CND, and CBND compute values for the Normal density functions, for the normal probability function, and for the bivariate normal probability functions. The functions are implemented as described in the book of E.G. Haug.

**Print and Summary Method:**

There are two methods to print and summarize an object of class "fOPTION" or of "option". The second is used for the older class representation.

**Value**

GBSOption
BlackScholesOption
returns an object of class "fOption".

GBSGreeks
returns the option sensitivity for the selected Greek, a numeric value.

GBSCharacteristics
returns a list with the following entries: premium, the option price, delta, the delta sensitivity, gamma, the gamma sensitivity, theta, the theta sensitivity, vega, the vega sensitivity, rho, the rho sensitivity, lambda, the lambda sensitivity.

GBSVolatility
returns the GBS option implied volatility for a given price.

Black76Option,
MiltersenSchwartzOption
return an object of class "fOPTION".

The option valuation programs return an object of class "fOPTION" with the following slots:

@call the function call.
@parameters a list with the input parameters.
@price a numeric value with the value of the option.
@title a character string with the name of the test.
@description a character string with a brief description of the test.

Note

The functions implement algorithms to evaluate plain vanilla options and to compute option Greeks as described in Chapter 1 of Haug’s Option Guide (1997).

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

References


Examples

```r
All the examples are from Haug’s Option Guide (1997)

CHAPTER 1.1: ANALYTICAL FORMULAS FOR EUROPEAN OPTIONS:

Black Scholes Option [Haug 1.1.1]
GBSOption(TypeFlag = "c", S = 60, X = 65, Time = 1/4, r = 0.08, b = 0.08, sigma = 0.30)

European Option on a Stock with Cash Dividends [Haug 1.1.2]
S0 = 100; r = 0.10; D1 = D2 = 2; t1 = 1/4; t2 = 1/2
S = S0 - 2*exp(-r*t1) - 2*exp(-r*t2)
GBSOption(TypeFlag = "c", S = S, X = 90, Time = 3/4, r = r, b = r, sigma = 0.25)

Options on Stock Indexes [Haug 1.2.3]
GBSOption(TypeFlag = "p", S = 100, X = 95, Time = 1/2, r = 0.10, b = 0.10-0.05, sigma = 0.20)

Option on Futures [Haug 1.1.4]
FuturesPrice = 19
GBSOption(TypeFlag = "c", S = FuturesPrice, X = 19, Time = 3/4, r = 0.10, b = 0, sigma = 0.28)

Currency Option [Haug 1.1.5]
r = 0.06; rf = 0.08
GBSOption(TypeFlag = "c", S = 1.5600, X = 1.6000, Time = 1/2, r = 0.06, b = 0.06-0.08, sigma = 0.12)
```
## Delta of GBS Option [Haug 1.3.1]
GBSGreeks(Selection = "delta", TypeFlag = "c", S = 105, X = 100, 
Time = 1/2, r = 0.10, b = 0, sigma = 0.36)

## Gamma of GBS Option [Haug 1.3.3]
GBSGreeks(Selection = "gamma", TypeFlag = "c", S = 55, X = 60, 
Time = 0.75, r = 0.10, b = 0.10, sigma = 0.30)

## Vega of GBS Option [Haug 1.3.4]
GBSGreeks(Selection = "vega", TypeFlag = "c", S = 55, X = 60, 
Time = 0.75, r = 0.10, b = 0.10, sigma = 0.30)

## Theta of GBS Option [Haug 1.3.5]
GBSGreeks(Selection = "theta", TypeFlag = "p", S = 430, X = 405, 
Time = 0.0833, r = 0.07, b = 0.07-0.05, sigma = 0.20)

## Rho of GBS Option [Haug 1.3.5]
GBSGreeks(Selection = "rho", TypeFlag = "c", S = 72, X = 75, 
Time = 1, r = 0.09, b = 0.09, sigma = 0.19)

## CHAPTER 1.3 OPTIONS SENSITIVITIES:

## The Generalized Black Scholes Option Formula
GBSCharacteristics(TypeFlag = "p", S = 1.5600, X = 1.6000, 
Time = 1, r = 0.09, b = 0.09, sigma = 0.19)

## CHAPTER 1.5: RECENT DEVELOPMENTS IN COMMODITY OPTIONS

## Miltersen Schwartz Option vs. Black76 Option on Futures:
MiltersenSchwartzOption(TypeFlag = "c", Pt = exp(-0.05/4), FT = 95, 
X = 80, time = 1/4, Time = 1/2, sigmaS = 0.2660, sigmaE = 0.2490, 
sigmaF = 0.0096, rhoSE = 0.805, rhoSF = 0.0805, rhoEF = 0.1243, 
KappaE = 1.045, KappaF = 0.200)
Black76Option(TypeFlag = "c", FT = 95, X = 80, Time = 1/2, r = 0.05, 
sigma = 0.266)
Index

*Topic **math**
  - BasicAmericanOptions, 2
  - BinomialTreeOptions, 4
  - HestonNandiOptions, 11
  - PlainVanillaOptions, 19

*Topic **models**
  - HestonNandiGarchFit, 7

*Topic **programming**
  - LowDiscrepancy, 13
  - MonteCarloOptions, 15

arithmeticAsianMCPayoff
  - (MonteCarloOptions), 15

BasicAmericanOptions, 2
BANAmericanApproxOption
  - (BasicAmericanOptions), 2
BinomialTreeOption
  - (BinomialTreeOptions), 4
BinomialTreeOptions, 4
BinomialTreePlot (BinomialTreeOptions), 4
Black76Option (PlainVanillaOptions), 19
BlackScholesOption
  - (PlainVanillaOptions), 19
BSAmericanApproxOption
  - (BasicAmericanOptions), 2
CBND (PlainVanillaOptions), 19
CND (PlainVanillaOptions), 19
CRRBinomialTreeOption
  - (BinomialTreeOptions), 4
fOPTION (PlainVanillaOptions), 19
fOPTION-class (PlainVanillaOptions), 19
GBSCharacteristics
  - (PlainVanillaOptions), 19
GBSGreeks (PlainVanillaOptions), 19
GBSOption (PlainVanillaOptions), 19
GBSVolatility (PlainVanillaOptions), 19
HestonNandiGarchFit, 7
HestonNandiOptions, 11
hngarchFit (HestonNandiGarchFit), 7
hngarchSim (HestonNandiGarchFit), 7
hngarchStats (HestonNandiGarchFit), 7
HNGCharacteristics
  - (HestonNandiOptions), 11
HNGGreeks (HestonNandiOptions), 11
HNGOption (HestonNandiOptions), 11
JRBinomialTreeOption
  - (BinomialTreeOptions), 4
LowDiscrepancy, 13
MiltersenSchwartzOption
  - (PlainVanillaOptions), 19
MonteCarloOption (MonteCarloOptions), 15
MonteCarloOptions, 15
NDF (PlainVanillaOptions), 19
plainVanillaMCPayoff
  - (MonteCarloOptions), 15
PlainVanillaOptions, 19
print.hngarch (HestonNandiGarchFit), 7
print.option (PlainVanillaOptions), 19
rnorm.halton (LowDiscrepancy), 13
rnorm.pseudo (LowDiscrepancy), 13
rnorm.sobol (LowDiscrepancy), 13
RollGeskeWhaleyOption
  - (BasicAmericanOptions), 2
runif.halton (LowDiscrepancy), 13
runif.pseudo (LowDiscrepancy), 13
runif.sobol (LowDiscrepancy), 13
show.fOPTION-method
  - (PlainVanillaOptions), 19
summary.fOPTION (PlainVanillaOptions), 19
summary.hngarch (HestonNandiGarchFit), 7
summary.option (PlainVanillaOptions), 19

TIANBinomialTreeOption
   (BinomialTreeOptions), 4

wienerMCPath (MonteCarloOptions), 15